Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.06.22274690

ABSTRACT

PTX-COVID19-B mRNA vaccine encodes for SARS-CoV-2 Spike protein G614 variant and lacks the proline-proline (986-987 position) mutation present in other COVID-19 vaccines. This Phase 1 observer-blinded, randomized, placebo-controlled, ascending dose study evaluated the safety, tolerability, and immunogenicity of two doses of PTX-COVID19-B vaccine in healthy seronegative adults. Participants received two intramuscular doses, 4 weeks apart, of 16-g, 40-g, or 100-g PTX-COVID19-B. Adverse events were generally mild to moderate, self-resolving, and transient. The most common solicited local and systemic adverse event was pain at the injection site and headache, respectively. After the first immunization, all participants seroconverted, producing high titers of anti-receptor-binding-domain, anti-Spike, and neutralizing antibodies, including neutralizing antibodies against the ancestral viral strain and the Alpha, Beta, and Delta variants of concern, in a dose-dependent way, further increasing over 10-20 times after the second dose. All tested doses of PTX-COVID19-B were safe, well-tolerated, and provided a strong immunogenicity response. The 40-g dose showed fewer adverse reactions than the 100-g dose, supporting further investigation of the 40-g dose. Clinical Trial Registration: ClinicalTrials.gov identifier: NCT04765436 (https://clinicaltrials.gov/ct2/show/NCT04765436)


Subject(s)
Pain , Headache , Severe Acute Respiratory Syndrome , COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.06.21261721

ABSTRACT

Prioritizing Ontarios long-term care home (LTCH) residents for vaccination against severe acute respiratory syndrome coronavirus 2 has drastically reduced their disease burden; however, recent LTCH outbreaks of variants of concern (VOCs) have raised questions regarding their immune responses. In 198 residents, mRNA vaccine dose 1 elicited partial spike and receptor binding domain antibody responses, while the second elicited a response at least equivalent to convalescent individuals in most residents. Residents administered mRNA-1273 (Moderna) mounted stronger total and neutralizing antibody responses than those administered BNT162b2 (Pfizer-BioNTech). Two to four weeks after dose 2, residents (n = 119, median age 88) produced 4.8-6.3-fold fewer neutralizing antibodies than staff (n = 78; median age 47) against wild-type (with D614G) pseudotyped lentivirus, and residents administered BNT162b2 produced 3.89-fold fewer neutralizing antibodies than those who received mRNA-1273. These effects were exacerbated upon serum challenge with pseudotyped VOC spike, with up to 7.94-fold reductions in B.1.351 (Beta) neutralization. Cumulatively, weaker vaccine stimulation, age/comorbidities, and the VOC produced an [~]130-fold reduction in apparent neutralization titers in LTCH residents and 37.9% of BNT162b2-vaccinated residents had undetectable neutralizing antibodies to B.1.351. Continued immune response surveillance and additional vaccine doses may be required in this population with known vulnerabilities.


Subject(s)
Coronavirus Infections
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.11.443286

ABSTRACT

Safe and effective vaccines are needed to end the COVID-19 pandemic caused by SARS-CoV-2. Here we report the preclinical development of a lipid nanoparticle (LNP) formulated SARS-CoV-2 mRNA vaccine, PTX-COVID19-B. PTX-COVID19-B was chosen among three candidates after the initial mouse vaccination results showed that it elicited the strongest neutralizing antibody response against SARS-CoV-2. Further tests in mice and hamsters indicated that PTX-COVID19-B induced robust humoral and cellular immune responses and completely protected the vaccinated animals from SARS-CoV-2 infection in the lung. Studies in hamsters also showed that PTX-COVID19-B protected the upper respiratory tract from SARS-CoV-2 infection. Mouse immune sera elicited by PTX-COVID19-B vaccination were able to neutralize SARS-CoV-2 variants of concern (VOCs), including the B.1.1.7, B.1.351 and P.1 lineages. No adverse effects were induced by PTX-COVID19-B in both mice and hamsters. These preclinical results indicate that PTX-COVID19-B is safe and effective. Based on these results, PTX-COVID19-B was authorized by Health Canada to enter clinical trials in December 2020 with a phase 1 clinical trial ongoing (ClinicalTrials.gov number: NCT04765436).


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL